The Cost of Contention

Martin Thompson first reported on the cost of contention using a simple benchmark that measures the time to increment a 64-bit counter 500 million times using various strategies. Results were reported here (section 3.1) and here (Managing Contention vs. Doing Real Work).

I re-implemented this benchmark here.

https://gist.github.com/nikolaybotevb/bc8cc1cdfa2f7cc212a915c487771d53

The results I observed (running on Java 9 with a 2017 MacBook Pro with a 2.9 GHz 7th Generation Kaby Lake Intel Core i7 processor) are comparable to those reported by Martin 7 years ago.

Method Time (ms)
Kaby Lake, Java 10
Time (ms)
Westmere
Single thread 70 300
Single thread with volatile 2,700 4,700
Single thread with CAS 3,500 5,700
Single thread with synchronized 2,000
Single thread with lock 9,300 10,000
Two threads with CAS 10,800 18,000
Two threads with synchronized 22,400
Two threads with lock 52,500 118,000

While this micro-benchmark is not representative of real-world workloads (as explained here), tempted by its simplicity I plan to use it as the first benchmark to track optimizations to the air-java concurrency library. This would be followed up by a more comprehensive benchmark like this one, which measure both latency  and throughput under various configurations, and finally a real-world application.

Leave a comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.